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Abstract—1It is shown in this paper that for certain classes of unconstrained isotropic elastic solids,
predictions can be made as to whether the overall volume changes which accompany two nonlinear
elastic deformations (namely the radial deformation of cylindrical tubes and the bending of rec-
tangular blocks into annular cylindrical sectors) are expansive or contractive. It is emphasised that
such predictions may be viewed as universal relations for the material classes concerned. © 1997
Elsevier Science Ltd.

1. INTRODUCTION

One of the issues of long-standing concern to material scientists has been the measurement
of volume changes that accompany the deformations of elastic solids. Discussions relating
to comparison between theory and experiments, and relevant references, can be found in
the book by Treloar (1975) and in the review papers by Price (1976) and Ogden (1982).
More recently, global volume changes data for cylindrical samples subjected to torsional
deformations have been obtained by Pixa ez al. (1988) and Duran and McKenna (1990).

As it is well known, when an elastic body is subjected to boundary conditions of
displacement type the final shape of the body, and consequently its final volume, is specified
at the outset. This is no longer the case, however, when such a body is subjected to boundary
conditions of a different nature and in these circumstances, for the same boundary data,
the same type of overall deformation (such as the radial deformation of circular cylindrical
tubes subjected to prescribed internal pressure) could be accompanied either by an overall
volume increase, or by an overall volume decrease, according to the kind of material of
which the elastic body is composed.

Under the assumption that the body forces are zero, we show in this paper that, for
certain material classes, non-trivial predictions can be made as to whether the overall
volume changes that accompany two types of overall deformation are expansive or contract-
ive. These deformations are (i) the radial deformation of circular cylindrical tubes and (ii)
the bending of rectangular blocks into annular cylindrical sectors and we note that such
predictions may be viewed as universal relations for the material classes concerned. (Indeed,
if in an experiment it is found that a certain overall deformation is accompanied by an
overall volume increase (decrease), it can be concluded that the material involved in the
experiment cannot belong to the class of materials for which it is known that this defor-
mation is necessarily accompanied by an overall volume decrease (increase); see Beatty
(1987) for a discussion on the role of universal relations in Continuum Mechanics.) The
tools which we employ for our analysis are the Jensen’s inequality (Hardy et al., 1952, p. 150)
and certain inequalities for symmetric functions of two variables which are consequences of
a result of Aron (1991). The materials under consideration include well-known material
models for solid and foam rubbers and we note that some other nonlinear elastic defor-
mations (such as the bending of an annular cylindrical sector into a similar sector) are also
amenable to treatment by the present method of investigation.
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2. PRELIMINARIES

In this paper we are concerned with plane deformations x = x(X) where x and X are
points that belong, respectively, to the domains & and Q of the Euclidean space R°. The
deformation gradient F = Vx is assumed to satisfy the condition det F > 0, where det stands
for determinant. By the polar decomposition theorem the deformation gradient can be
represented uniquely in the form F = VR where R is a proper orthogonal tensor and V is
a symmetric positive-definite tensor. The eigenvalues of V, denoted here by 4, i = 1, 2, are
known as the principal stretches.

For plane deformations, the strain-energy function W, which characterises a homo-
geneous isotropic hyperelastic solid, is a symmetric function of 4, 4,:

W= W, i) = Wik, 4,). (h

The function W will be assumed to satisfy

ow
W(/llan)?O’ W(1,1)=0, WiEbT’ i= 1,2, (2)
and
A—DW,(4,4) >0, foralli>0, 3)

equality in (2), being possible if and only if 2, = 4, = 1. The condition (3) is the well-known
pressure—compression inequality (which is the requirement that, for deformations with
Ay = 4, = 4, the volume is decreased by pressure but increased by tension; see Truesdell
and Noll, 1965, Section 51) and the condition (2), expresses the fact that the reference
configuration is unstressed.

According to a result of Aron (1991), a symmetric function of two variables,
[ = f(Ay, 4o), satisfies

S A2) > (S odgs /i ha)s At # Do @)

provided that the following two conditions are satisfied :

}Llfl—)-zfz #0, forai, #2,, ()
and
1

EA) =i, (LA —fi2(4, )+ zfl (4,4) >0, foralli>0, (6)

where

o

= P = ] 7
I PR TR Lj=123 (7N

A trivial modification of the proof of (4), shows that the conditions £:(4) < 0 (for all
A > 0) and (5) (together) imply

S, 4) </ Midas A la), A # Ay ®

Using these results, it was shown by Aron and Aizicovici (1994) that for elastic
materials which satisfy
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AW =AW, + AW, —A2W,, #0, for A, # 1, )
we have
E,(2) > O(for all & > 0) = p(Ay, 13) > p(/AidssSAida)s A1 # Ao, (10)
and

E,(4) <O(forall A > 0) = p(L;, 12) < p(y/AiAzs/ Arde)s 2y # Ao, (11)

where we have used the notations
. \ ] 1
E,(D) =3W (LA)-W,(4AH)+4 [Wm(ft,i)— Wi+ S Wi, A)} (12)
A

and
P21, 40) = AW (AL )+ A, Wa(4,, 4,). (13)

Some examples of strain-energy functions which satisfy (10), and (11), can be found in
Aron and Aizicovici (1994) and we note that, from (9) and (10), it follows that a strain-
energy function of the form

W=g(i+3)+h(]), J=4i,, a=const., a#0, (14)
and which is such that
[’ (x)+x9"(x)] >0, forall x >0, (15)

satisfies (10),5. Also, from (9) and (11), it follows that a strain-energy function of the form
(14) and which is such that

a*[g'(x) +xg"(x)] <0, forall x>0, (16)

satisfies (11),5. The physical significance of inequalities (10), ; and (11),; has been discussed
by Aron and Aizicovici (1994) in the context of both homogeneous and non-homogeneous
deformations.

Based upon the result of Aron (1991) mentioned above, we can also show that for
elastic materials which satisfy the condition

AW, —22W,, #£0, ford, # 4,, (17
we have
E,(A) > O(for all i > 0) = q(4,, 1) > g(/AAa, /A da)s A1 # Ao, (18)
and
E,(3) < O(forall 1 > 0) = g(4,, 1) < g(/21Ar, /A1 42), A1 # o, (19)

where
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E (D) = =2W, (4L D)+ AW (4 ) = Wi (4, 4)], (20)

and
q(A1,42) = W(d, A2) =4 W1 (41, 2) — A, Wa (4, 4s). (21)

Using (17) and (18), it can be easily checked that a strain-energy function of the form (14),
and which is such that

(x—1g'(x)+xg"(x) <0, forallx>0, (22)

satisfies (18), . Similarly, it follows from (17) and (19) that a strain-energy function of the
form (14), and which is such that

(a—Dg'(x)+xg9"(x) >0, forallx >0, (23)

satisfies (19), ;.

Examples of strain energies that satisfy (19),; but which, in general, do not satisfy
either (10),; or (11),5, are provided by the harmonic materials introduced by John (1960),
which are characterised by a strain-energy function of the form

W=ghi+i)—J, 9@ =9@2)=1 g >0. 24

A specific example, which illustrates this particular point, is provided by the semi-linear
material (see John, 1960) for which

;~0+2.u0 « 2
A+A, =2+ +4,—1
4/«‘() ( 1 2 ) 1 2 (25)

Aos g =const., po >0, Ay+p, > 0.

g +4;) =

On the other hand, it is clear that the compressible Varga materials (which have been
introduced by Haughton (1987) and independently by Carroll (1988), and which are
obtained by letting « = 1 and g(x) = x in (14)) cannot satisfy either (18),; or (19),3,
although they always satisfy (10),;. The compressible Varga strain-energy function,
however, satisfies the condition

q(21, 22) = q(/ 4142,/ 1 d2), forall i, 4; >0, (26)

and we note that a more general strain-energy function which belongs to the class (1) and
for which (26) holds is

W=V G—')M(J), 27)

where V is a symmetric function of 4,, 4,.

Examples of a more specific nature will be considered in Section 5 of this paper and
we note that in what follows, the above results will be used in conjunction with Jensen’s
inequality (Hardy et al., 1952, p. 150)

JJ ¢(det F)dQ > A(Q)¢ <A (). Jj (detF) dQ), (28)

where ¢ denotes a convex function of class C* and A(Q) stands for the area of Q.
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3. VOLUME CHANGES ACCOMPANYING THE BENDING OF RECTANGULAR BLOCKS

Let (r, 0) denote spatial polar coordinates and (X, Y) referential Cartesian coordinates
with

—-D<XKD, —<YK D = const. (29)

1
2

R =

A deformation which describes the bending of a rectangular block into a sector of a circular
tube may be given in the form

r=f(X), 8=uav, (30)

where the function f'and the constant « are to be determined from the boundary conditions
and the equilibrium equation.

For deformations (30) and materials (1), the equilibrium equations in the absence of
body forces can be written in the form

d \
dT(WI()“]’/L?_) = aW, (41, 42), (1)

where

M =11X), 4 =af(X), (32)

and the prime denotes the derivative with respect to the argument (see Ogden, 1984a,
Section 5.2.4).

As discussed by Ogden (1984a, Section 5.2.4), we may consider the equation (31)
together with one of the following two sets of boundary conditions :

W, (S (D), #/(D)) = W, (f'(—D),af(— D)) = 0,} 33)
aprescribed,
or
Wi (f (D), af(D)) = W\ (f'(—=D),af(—D)) =0,
(34)

M= JD SXOW,(f(X),xf(X))dX prescribed.

The equations (33),, (or 34),,) imply that the tractions on both curved boundaries of the
(deformed) body vanish and we note that the expression in the right-hand side of (34);
represents the magnitude (up to a multiplicative constant which depends upon the dimen-
sions of the rectangular block) of the moment about the origin of the stresses on the faces
8= +ta/2

Let Q denote the domain defined by (29) and let (£, o) be a solution to any of the two
considered boundary value problems, which we now assume exists. On using (31), (32) and
(33) .2, and on integrating by parts, we find that (see (11))

.” p(f,af)dQ = J Wi af)+ofWa(f', 2f)] dX = 0. (35)

Thus, if W is a material which satisfies (10), ;, we infer from (35) that we have



2808 M. Aron

jf W (Joff ', off )dQ < 0. (36)

Introducing the additional assumption

d2
rEid (A4 =0, foralli>0, (37)

and making use of (28) now leads to

Wi(/6./8) <0, (38)
where we have used the notation
D

off dX = a(4D)"'[f*(D)—f*(—D)}. (39)

5= A(Q) ” (det F)dQ = (2D)"! j
Q -

In view of (3), the inequality (38) yields
< (40)
and, since the integral in (39), represents the deformed area, we conclude that under our
constitutive assumptions the deformation cannot be accompanied by an overall volume

Increase.
In a similar manner, we can show that if the material satisfies (11),; and

d2

preld (VA /H <0, foralli>0, 41y
we must necessarily have
o621, (42)

so that, in this case, the deformation cannot be accompanied by an overall volume decrease.
We assume now that the elastic material satisfies (19),; and, additionally,

;—)q(ﬁ, JA) = % [W(/ 2 /R =2 /AW (3 S 2)] <0, foralli>0, (43)

and

d2
EQ(\/Z JA) <0, foralli> 0. (44)

We note that the inequality (43), which can be written in the form

2\/71% Wi (S JA) = Wi (Jo D+ Wia(JA /7)) >0, foralli>0, (45)

is a well-known (necessary) condition for the stability of equibiaxial deformations under
prescribed dead-loading boundary tractions (see Ogden, 1984b for instance) and that it
implies the pressure—compression condition (3).

From (19),; and (2), (or, alternatively, from (26) and (2),), we obtain



Global volume changes 2809

— A WA, ) = Wi (A1, 4y) < W/ A da, /21 72) =23/ 00 2o W (A s N/ A A2),

(41, 42) #(1, 1), (46)

which, when combined with (35), leads to

” (WSt S ) =2 aff W (o, /o)1 dQ = 0. (47)
Use of (44) with (28) now gives

W(/8,\/0)—2/6W,({/6,\/8) > 0 (48)

and, in view of (43) and the fact that ¢(1, 1) = 0, we infer that (48) implies (40). Thus, for
materials which satisfy (19),;, (43) and (44) (or (26), (43) and (44)), the considered
deformation cannot be accompanied by an overall volume increase.

As discussed in the Introduction, the inequalities (40) and (42) may be regarded as
universal relations. Thus, if under appropriately simulated experimental conditions, it is
found that the bending of a rectangular block into an annular cylindrical sector is
accompanied by an overall volume increase, it can be concluded that the material involved
in the experiment cannot belong to the class of isotropic elastic solids which satisfy (9),
(10), and (37), or to the class of isotropic elastic solids that satisfy (17), (19),, (43) and
(44), or to the class of isotropic elastic solids that satisfy (26), (43) and (44). On the other
hand, if it is found experimentally that the considered deformation is accompanied by an
overall volume decrease, it can be concluded that the material involved in the experiment
cannot belong to the class of isotropic elastic solids which satisfy (9), (11), and (41).

4. VOLUME CHANGES ACCOMPANYING THE RADIAL DEFORMATIONS OF
CYLINDRICAL SHELLS

Let (r,8) denote spatial polar coordinates and (R, ®) referential polar coordinates
with

O0<p, <R<p,, 0<O<2n, p,p,=const. (49)
The radial deformations of cylindrical shells are characterised by
r=f(R), 6=0, (50)
where the function fis to be determined from the equilibrium equation and the boundary
conditions.

For deformations (50) and materials (1), the equilibrium condition in the absence of
body forces is (see Ogden, 1984a; Section 5.2.4)

d
a[RWI (A1, 42)] = W14y, 42), (51)
where
=Ry, i =T (52

On using (51) and (52) and on integrating over Q (where Q is now the domain
characterised by (49)) we obtain (see (13))
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ﬁ p <f',§)d9 = 22002/ (p2) Wil z=p, — PSP ) Wi =y ] (33)

which, when combined with (10),,, gives

lp.flp,) Wilk=p, =P S0 Wilr_p] = fL\/ZIf;—/WI (\/%—,\/%)dﬂ, (54)

With the help of (28) we now find that (54), together with the additional assumption

d 2
ds?

[ViW, (/i /D] 20, foralli>0, (55)
yields

o2 f(P)Wilaep,—p (0O Wi laey ] = AW (\/8,./9). (56)

Thus, in view of (3), we conclude that (40) (where é now denotes the ratio of the cross-
sectional area of the cylindrical body in the deformed configuration to the cross-sectional
area of the cylindrical body in the reference configuration) holds provided that the boundary
conditions are chosen so as to ensure that the left-hand side of (56) is non-positive and
provided that the material satisfies (10), ; and (55). One possible set of boundary conditions
is

w
Wilkp, =0, =+ = —P, P,=const,P;,>0, (57)

Ar R=p,

and clearly, there are some other such choices available.

By a similar argument, we can show that for the same choice of boundary conditions,
(40) holds for all materials that satisfy (43}, (44) and either one of (19),, and (26), whereas
for boundary conditions which ensure that the left-hand side of (56) is non-negative, we
can show that (42) holds, provided that the material satisfies (11),5 and

2
ddm AW (/D] <0, forall 2> 0. (58)
JE

Clearly, in the present context and for the materials concerned, the eqns (40) and (42)

may also be viewed as universal relations, along the lines discussed in the preceding section.

5. EXAMPLES

Our first example is provided by a material whose strain-energy function in plane
strain is

W="C[Ar 447 -2+ B(J—1)], u. B = const.,u,f > 0. (59)

™=

The material (59), which for § = 2 represents the well-known Blatz—K o material model for
foam rubbers, was considered recently by Silling (1991), Haughton (1990), Biwa (1995)
and Wang and Aron (1996). This material belongs to the class (14) and satisfies (16). Thus,
the condition (11),5 is satisfied and it can be easily verified that the inequalities (41) and
(58) are also satisfied. In view of the previous discussion we conclude that, for appropriate
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boundary conditions (as stated in Sections 3 and 4), the deformations (30) and (50) of
bodies composed of this material cannot be accompanied by an overall volume decrease.

The compressible neo-Hookean material whose strain-energy function in plane strain
is given by

) k Jom
o N E IR LN W AL A |
2 m m—1 m—1

2
w,k,m=const., p k>0, m>§, (60)

was proposed by Baltz (1969). The condition m > % follows from molecular considerations
due to Baltz (1969). Clearly, the material (60) satisfies (10), ; and we have

WA =k (61)

The condition (55) 1s therefore satisfied for m < 1 and thus, for me(%, 1] and appropriate
boundary conditions, the radial deformation of hollow cylindrical tubes composed of this
material cannot be accompanied by an overall volume increase. (We note that from the
present considerations no conclusions can be drawn about the nature of volume changes
that accompany the bending deformations of rectangular blocks composed of this material
since the corresponding expression for (d?/dA%) W, (\/1 \/1) does not have a definite sign.)

A compressible neo-Hookean material for which the conditions (10),; and (37) are
satisfied is given by

2

2y
W= (i, —12) + KT[J(an—l)-H], K = const., 0<i<l, (62)

and a compressible Varga material which satisfies (43) and (44) is given by

1 2
W=/1,+/12+<———1>(J+1)——\/j, Kk =const., O0<k<Il. (63)
K

NG NE

We conclude that, for boundary conditions of the type (33) or (34), the bending of
rectangular blocks composed of these two materials (both of which have been considered
previously by Aron and Wang, 1995) cannot be accompanied by an overall volume increase,
and that for boundary conditions which render the left-hand side of (56) non-positive, the
radial deformation of hollow cylindrical tubes composed of the material (63) cannot be
accompanied by an overall volume increase.

Another example of a material which belongs to the class (27) and which satisfies the
conditions (43) and (44) is provided by

W= Ai"/l{l+3(/11+/'.2)+).§/l,"—x\/}+(K~4)(J+1), Kk =const., k>4, (64)
and an example of a harmonic material which satisfies (19),. (43) and (44) is provided by
W= 50 +4) +500 +42) =4, — A +5— . (65)

For appropriate boundary conditions therefore, (40) will hold for both these materials and
in respect to both the bending deformation (30) and the radial deformation (50).

We note that, for some of the materials discussed in this section, solutions that describe
the bending of rectangular blocks and/or the radial deformation of cylindrical tubes have
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been obtained in closed form. For details, we refer the reader to Carroll (1988), Carroll
and Horgan (1990), Aron and Wang (1995) and Wang and Aron (1996).

6. DISCUSSION

In this paper it is shown that for certain material classes, non-trivial predictions can
be made as to whether the overall volume changes that accompany two types of overall
deformation are expansive or contractive and, as discussed in Sections 1 and 3, con-
siderations of this nature may be of assistance to the experimental process in nonlinear
elasticity. Each of the material classes under consideration is characterised by a specific set
of constitutive assumptions (which are mainly expressed in terms of inequalities) and we
emphasise that unless these assumptions hold irrespective of the deformation magnitude,
no conclusion may be drawn in the present context (see the discussion regarding the material
(60) in Section 5). On the other hand, if on the basis of the present analysis it can be
predicted that the volume change in a certain material (such as the 47 vol. % foamed
polyurethane rubber which is known to be represented by the Blatz—Ko strain energy
function ; see Section 5 and Blatz and Ko, 1962) has a definite sign irrespective of the
deformation magnitude and if this prediction is subsequently contradicted by experimental
findings, it can be concluded that the material model employed in the analysis is not capable
of representing the (real) material at all states of deformation. Finally, we remark that,
with the exception of inequalities (2), and (3), none of the inequalities which have been
used in the paper can be expected to be satisfied universally (that is, they cannot be expected
to be satisfied by all unconstrained isotropic elastic solids; see the examples discussed in
Section 5) and consequently, their use here can be justified only by the fact that they hold
for some of the well-known material models which have been employed in the literature.
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